
Parallelization Strategies for GPU Accelerated Data Sampling
Introduction
Compute hardware is outpacing I/O. To run large scientific workflows, data
reduction is necessary to reduce the load on I/O hardware.

Sampling is a new approach to data reduction, but it doesn’t have much
availability on accelerating hardware like GPUs. To be practical, data reduction
must be fast – accomplished with GPU implementations.

Gradient Sampling
Gradient based sampling is a new sampling approach that prioritizes data
points with a higher gradient [1]. Samples near rapidly changing regions of
interest are saved.

Gradient sampling has two main bottlenecks: histogramming and gradient
computation. Both can be sped up using parallel processors. In each case, the
algorithm can take advantage of shared memory when it runs on a GPU, at the
cost of introducing more warp divergence. The optimal strategy depends on
which factor has more weight on performance. This study aims to implement
gradient sampling in CUDA by optimizing both steps.

Cooper Sanders and Jon Calhoun (Advisor)
Holcombe Department of Electrical & Computer 

Engineering – Clemson University
cssande@clemson.edu, jonccal@clemson.edu

0.029 0.0380.33 0.21

8.87

15.72

0

2

4

6

8

10

12

14

16

18

3.81 MB 38.15 MB

B
an

dw
id

th
 [G

B
/s

]

Input Data Size [MB]

Sampling Synthetic Normal Data over 12 Bins

Python C CUDA

Applications
Below is a visualization of rapidly changing regions in an asteroid simulation 
[1]. Highlighted areas are prioritized in gradient-based data sampling.

Gradient Sampling Pseudocode [1]

References
[1] Ayan Biswas, Soumya Dutta, Earl Lawrence, John Patchett, Jon C. Calhoun, and James Ahrens. 2021.
Probabilistic Data-Driven Sampling via Multi-Criteria Importance Analysis. IEEE Transactions on
Visualization And Computer Graphics 27, 12 (2021), 4439–4454.
[2] Megan Fulp, Ayan Biswas, and Jon Calhoun. 2020. Combining Spatial and Temporal Properties for
Improvements in Data Reduction. (2020).
[3] https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Acknowledgements
Clemson University is acknowledged for generous allotment of compute time on the Palmetto cluster.
This material is based upon work supported by the National Science Foundation under Grant No. SHF-
1910197 and SHF-1943114.

Conclusions from Results
• Gradient Sampling is highly 

parallelizable and runs 
significantly faster on GPUs.

• Discrete Gradient Computation 
is most efficiently implemented 
on GPUs without using shared 
memory.

Similar to convolution, each 
output element in the discrete 
gradient depends on 
surrounding input elements [3].

• In general, there is a tradeoff with 
shared memory between reduced 
global accesses and increased warp 
divergence. Complex algorithms 
with minimal data locality, like 
gradient computation, are slowed 
by shared memory.

Experimental Design
Several parallelization strategies at each stage of the algorithm were
implemented in Python, C, & CUDA. They were benchmarked on synthetic
data from a normal distribution using high-end hardware:
• 56 core Xeon Gold CPU
• Nvidia A100 GPU

Contributions
• Analysis of parallel programming strategies for histogram computation
• Design and analysis of gradient computation in CUDA
• GPU implementation of full gradient sampling algorithm

Results and Discussion

Future Work
Gradient Sampling in CUDA is limited because 
not all of it is on the GPU yet – only the major 
parts of the algorithm covered in this poster.

Additionally, more sampling algorithms [1] use 
the stages covered in this poster:
• Joint Multi-Criteria Sampling
• Combined Independent Sampling

0.14 0.140.22 0.22

169.73
174.62

150.87 153.33

0

20

40

60

80

100

120

140

160

180

200

2.72 12.57

B
an

dw
id

th
 [G

B
/s

]

Input Data Size [GB]

Gradient Computation on Synthetic Normal 
Data

Control Numpy Global Shared

2.8 2.8 2.19.4 11.9 12.713.2 13.2 13.3

905.2

698.5 698.6
678.9 661.7 649.5

0

100

200

300

400

500

600

700

800

900

1000

2.72 12.57 37.02

B
an

dw
id

th
 [G

B
/s

ec
]

Input Data Size [GB]

Histogramming Synthetic Normal Data over 12 
Bins

CPU Original Linearized
Shared Memory Reduction Sum

Gradient Computation Performance
• Numpy: 1.6x speedup
• Global Memory Approach: 1200x speedup
• Shared Memory Approach: 1100x speedup

Comparing to a sequential CPU implementation in C

Histogram Computation Performance
• Original Approach [2]: 4.6x speedup
• Linearized Approach: 5.3x speedup
• Shared Memory Approach: 300x speedup
• Parallel Reduction Sum Approach: 260x speedup

Comparing to a sequential CPU implementation in C

Gradient Sampling Performance
• C: 8.5x speedup
• CUDA: 360x speedup

Comparing to the original Python implementation

Gradient 
Computation

Histogramming

Bin Count 
Distribution

Further 
Discussion 
of Results: 


