Parallelization Strategies for GPU Accelerated Data Sampling
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Compute hardware 1s outpacing 1/O. To run large scientific workflows, data -
reduction 1s necessary to reduce the load on I/O hardware. Holcombe Department of Electrical & Computer
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Gradient sampling has two main bottlenecks: histogramming and gradient
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, , , , , Below 1s a visualization of rapidly changing regions in an asteroid simulation
* Analysis of parallel programming strategies for histogram computation

, , , A [1]. Highlighted areas are prioritized in gradient-based data sampling. 14
* Design and analysis of gradient computation in CUDA
* GPU implementation of full gradient sampling algorithm = 12
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