Parallelization Strategies for GPU Accelerated Data Sampling

U N | V E R S | T Y

Introduction Cooper Sanders and Jon Calhoun (Advisor)

Compute hardware 1s outpacing 1/O. To run large scientific workflows, data -
reduction 1s necessary to reduce the load on I/O hardware. Holcombe Department of Electrical & Computer

Results and Discussion

En gine ering _ Clems on University Gradient Computation on Synthetic Normal Further

Data Discussion
Sampling 1s a new approach to data reduction, but it doesn’t have much : 200 of Results:
availability on accelerating hardware like GPUs. To be practical, data reduction CSS&HdC@CleSOH.Cdu, Jonccal@clemson.edu
must be fast — accomplished with GPU implementations. 180 169.73 o2

160 . 1535 Gradient Computation Performance

Gradient Sampling 140 * Numpy: 1.6x speedup
Gradient based sampling 1s a new sampling approach that prioritizes data Gradient Sampling Pseudocode [1] * Global Memory Approach: 1200x speedup

e
O
-

points with a higher gradient [1]. Samples near rapidly changing regions of * Shared Memory Approach: 1100x speedup

terest are saved. Input: D (data), N (number of data points), M (number of

samples), B (number of bins)

. . . . Comparing to a sequential CPU implementation in C
Result: Iy (importance function/histogram for selecting M

Bandwidth [GB/s]
o
S

Gradient sampling has two main bottlenecks: histogramming and gradient

. ol X i . e : N " samples from /N data points) 60
computation. both can b€ sped up using parallel processors. In each case, the : : . . .
P . b b 5P p . G computeGradlenF(D); . 4 A 40 Histogramming Synthetic Normal Data over 12
algorithm can take advantage of shared memory when it runs on a GPU, at the Gag — computeGradientMagnitude(G); Gradient Bing
cost of introducing more warp divergence. The optimal strategy depends on H « histogram(G,,,.,, N, B); Computation 20 1000
which factor has more weight on performance. This study aims to implement I < zeros(B); < - 0 014 02 014 022 000 905.2
gradient sampling in CUDA by optimizing both steps. C «— M/B; // Expected number of samples d - 57 17 57
J ;f -1 — Histogramming Input Data Size [GB] 800
while] > N Uan >. . 0 : | > m Control = Numpy m Global = Shared — 700 678.9 R 698'66495
c;j < H|j|; // Count inbin j - ~ D '
IF [J] — Cj; Bin Count o ° % 000
M=M-—c¢; pistribution Histogram Computation Performance = <00
Similar to convolution, each j=7—1; N | * Onginal Approach [2]: 4.6x speedup = 400
output element in the discrete end Linearized Approach: 5.3x speedup =
gradient depends on / *Normalize by histogram count * / Shared Memory Approach: 300x speedup A 300
Ing 1 | : ' '
surrounding mput elements 3] forj — Oto Bbyldo * Parallel Reduction Sum Approach: 260x speedup 200
Irlj] « Irlj]/Hjl; 100
end
Comparing to a sequential CPU implementation in C o 2412 15 119 132 L 127133
2.72 12.57 37.02
Sampling Synthetic Normal Data over 12 Bins Input Data Size [GB]
I3 = CPU Original Linearized
Applications i o Shared Memory ®m Reduction Sum

Contributions

, , , , , Below 1s a visualization of rapidly changing regions in an asteroid simulation
* Analysis of parallel programming strategies for histogram computation

, , , A [1]. Highlighted areas are prioritized in gradient-based data sampling. 14
* Design and analysis of gradient computation in CUDA
* GPU implementation of full gradient sampling algorithm = 12

Grad. Magnitude of v02 S 10 Gradient Sampling Performance
0.0e+00 02030405060.708 1.0e+00 % oY * C: 8.5x speedup
| N [—— s 8 . :
N - £ CUDA: 360x speedup
° ° O e | - 6
Experlmenta} Des1gn | | — Comparing to the original Python implementation
Several parallelization strategies at each stage of the algorithm were 4
implemented in Python, C, & CUDA. They were benchmarked on synthetic
data from a normal distribution using high-end hardware: 2
56 core Xeon Gold CPU 4) o 0 voss 021
¢ NVIdla A100 GPU .) || 3 81 MB 38 15 MB
| Ve Input Data Size [MB]
Acknowledgements Python =C = CUDA
Cl§mson Uniyersity 1s acknowledged for generous allqtment of compute time on the Palmetto cluster. | C OIlClllSiOnS from Results Future Work
This material 1s based upon work supported by the National Science Foundation under Grant No. SHF- , , L . . . o
1910197 and SHF-1943114. * Gradient Sampling is highly e In general, there is a tradeoff with Gradient Sampling 1n CUDA 1s limited because
parallelizable and runs shared memory between reduced not all of 1t 1s on the GPU yet — only the major
Ref significantly faster on GPUs. global accesses and increased warp parts of the algorithm covered in this poster.
eferences ; . . , ,

[1] Ayan Biswas, Soumya Dutta, Earl Lawrence, John Patchett, Jon C. Calhoun, and James Ahrens. 2021. DlSCI’GtG Gra.dlent Comp utation dl.Verge'n(‘:e- Complex al.gorlt.hms o . .
Probabilistic Data-Driven Sampling via Multi-Criteria Importance Analysis. IEEE Transactions on 1s most efficiently implemented ~ with minimal data locality, like Additionally, more sampling algorithms [1] use
Visualization And Compqter Graphics 27, 12 (2021), 4439—445‘}-. | | on GPUs without using shared gradient computation, are slowed the stages covered 1n this poster:
[2] Megan Fulp, Ayan Biswas, and Jon Calhoun. 2020. Combining Spatial and Temporal Properties for memory. by shared memory. e Joint Multi-Criteria Sampling

Improvements 1n Data Reduction. (2020). , ,
[3] https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1{6f42faeel * Combined Independent Samphng

