
Research Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 0(0) 1–21
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231180504
journals.sagepub.com/home/hpc

Accelerated dynamic data reduction using
spatial and temporal properties

Megan Hickman Fulp1, Dakota Fulp1, Changfeng Zou1,
Cooper Sanders1, Ayan Biswas2, Melissa C. Smith1 and
Jon C. Calhoun1

Abstract
Due to improvements in high-performance computing (HPC) capabilities, many of today’s applications produce petabytes
worth of data, causing bottlenecks within the system. Importance-based sampling methods, including our spatio-temporal
hybrid data sampling method, are capable of resolving these bottlenecks. While our hybrid method has been shown to
outperform existing methods, its effectiveness relies heavily on user parameters, such as histogram bins, error threshold,
or number of regions. Moreover, the throughput it demonstrates must be higher to avoid becoming a bottleneck itself. In
this article, we resolve both of these issues. First, we assess the effects of several user input parameters and detail
techniques to help determine optimal parameters. Next, we detail and implement accelerated versions of our method using
OpenMP and CUDA. Upon analyzing our implementations, we find 9.8× to 31.5× throughput improvements. Next, we
demonstrate how our method can accept different base sampling algorithms and the effects these different algorithms have.
Finally, we compare our sampling methods to the lossy compressor cuSZ in terms of data preservation and data movement.

Keywords
Data reduction, data sampling, importance sampling, temporal selection, feature preservation, parameter optimization,
GPU, CUDA, OpenMP, accelerated hardware, performance

Introduction

Modern high-performance computing (HPC) systems have
increasingly high computation capabilities, allowing scientific
simulations to solve previously intractable problems. These
intensive simulations are capable of producing petabytes of
data (Strand 2015; Habib et al., 2013), yet current HPC system
I/O capabilities are not capable of handling such data effi-
ciently (Cappello et al., 2019). As a result, conventional post
hoc data analysis is less tractable, as storing all output data is
costly (Tikhonova et al., 2010; Nouanesengsy et al., 2014;
Dutta et al., 2017; Ahrens et al., 2014). Many researchers use
data reduction techniques to reduce data size before any I/O
operations to alleviate this bottleneck.

Data sampling is a popular data reduction method that
saves a subset of data values and uses this subset to re-
construct missing data when the whole dataset is needed.
Some existing sampling methods utilize uniform random
selection techniques to determine which points to keep
(Woodring et al., 2011; Childs 2015;Wei et al., 2018), while
others focus on preserving specific regions of interest (ROI)
in the data (Biswas et al. 2018, 2020a; Nouanesengsy et al.,

2014). In our prior work, we develop a spatio-temporal
hybrid data sampling method that biases rare data values
and leverages a dataset’s temporal aspect to achieve higher
post-reconstruction quality (Fulp et al., 2020).

While our hybrid data sampling method has been shown
to outperform existing reduction schemes, there exist three
areas of improvement that we must address. First, the ef-
fectiveness of our method relies heavily on user input pa-
rameters, which highly affect the reduction throughput and
data quality (see Section 4). However, in our previous work,
the extensive effects of these parameters have yet to be
explored. Second, while our method aims to work with HPC
applications, our CPU implementation is ill-prepared due to

1HolcombeDepartment of Electrical and Computing Engineering, Clemson
University, Clemson, SC, USA
2Los Alamos National Laboratory, Los Alamos, NM, USA

Corresponding author:
Megan Hickman Fulp, Holcombe Department of Electrical and
Computing Engineering, Clemson University, Clemson 29634, SC, USA.
Email: mlhickm@clemson.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231180504
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0001-5630-049X
https://orcid.org/0009-0005-4879-3622
https://orcid.org/0000-0001-7191-4422
mailto:mlhickm@clemson.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231180504&domain=pdf&date_stamp=2023-06-05

the lower throughput of the overall reduction process (see
Section 5). Last, as our method uses a specific sampling
algorithm at its core (Biswas et al., 2018), this may cause
our method to be dated as the field of sampling grows (see
Section 6).

In this work, we aim to resolve these issues by providing
methods to aid the user in finding an optimal set of pa-
rameters, improving our method’s throughput with
OpenMP and CUDA, and detailing how to use other
sampling cores within our method. Specifically, our novel
contributions are as follows:

· We analyze the impacts of various user input pa-
rameters on the effectiveness of our hybrid data
sampling method and detail methods to assist the user
in determining an optimal set of input parameters.

· We describe, implement, and assess accelerated
versions of our hybrid data sampling method in
OpenMP and CUDA. Upon evaluating our GPU-
based implementations, we find throughput im-
provements of 9.8× to 31.5× when compared to the
OpenMP implementations.

· We demonstrate how our hybrid data sampling
method accepts different sampling core algorithms
and analyze the effects of using different core
algorithms.

Related works

Spatial and temporal data reduction methods

While reducing the size of scientific datasets is critical, these
datasets often include features that are more important to
scientists; thus, not all data values are equally important. To
meet the needs of domain scientists, data reduction tech-
niques that significantly reduce data size while maintaining
these features are necessary. Importance-based sampling
preserves these features by assuming that rare values are
more important and by giving these rare values a sampling
bias. Biswas et al.’s importance-based sampling method
uses this approach and, as such, over-represents rare values,
without ignoring more common values (Biswas et al. 2018,
2020a; Nouanesengsy et al., 2014). Their method uses the
distribution of data values to calculate an importance factor
(0 ≤ IF ≤ 1) for each data point (pi) such that rare values have
a higher IF and more frequent values are assigned a lower
priority. Upon deciding IF(pi), a random number ξ is
generated for each data point. Their method then determines
if ξ < IF(pi) for each data point, and, if so, it includes the data
point in the sample.

Another approach to data reduction is through time-step
selection (Akiba et al., 2006). This type of data reduction
analyzes the differences between sequential time-steps to
determine which time-steps provide a representative

overview of the entire data series. These few representative
time-steps are selected to be saved while the other time-
steps are discarded, thus reducing the overall data size. For
example, assuming the previous time-step (tk�1) has been
selected, we need to decide whether to select the current
time-step (tk) as well. Upon comparing the two, if tk is
similar enough to tk�1, we do not need to select it as tk�1 is a
sufficient representation.

Using concepts from Biwas et al.’s importance-based
sampling (Biswas et al., 2020b) and existing time-step
selection methods, we develop our spatio-temporal hy-
brid data sampling method in prior work (Fulp et al., 2020).
This method provides a bias to more rare data values while
leveraging the temporal aspect of the data to use its sam-
pling budget efficiently. This approach has been shown to
achieve higher post-reconstruction data quality.

Accelerated data reduction methods

To keep pace with existing and future HPC applications,
many researchers use GPUs to improve algorithm
throughput. Currently, many works have studied the use of
GPUs to reduce big data (Tian et al., 2020; Wang et al.,
2009; Fogal et al., 2013; Gutiérrez et al., 2017). While there
are various forms of both sophisticated and straightforward
data sampling for GPUs, a majority of them are specifically
designed for computer graphics (Wang et al., 2009; Fogal
et al., 2013) or machine learning (Gutiérrez et al., 2017).
While their specializations make them great for their spe-
cific fields, they also make them ill-suited for all scientific
datasets requiring high data fidelity.

The first example of these works utilizes data sampling
on a GPU for simulating global illumination (Wang et al.,
2009). Next, SMOTE-GPU is a GPU implementation of the
Synthetic Minority Oversampling Technique (SMOTE) that
performs data sampling algorithms based on the SMOTE
algorithm. However, this work is based on a machine-
learning sampling aspect and studies how imbalanced
data samples can affect machine learning (Gutiérrez et al.,
2017). Finally, Fogal et al. implement a GPU sampling
algorithm that focuses on identifying regions that should be
densely sampled (Fogal et al., 2013). Similar to our methods
of dividing a dataset into regions, their algorithm subdivides
the volume into pieces, then loops over each “brick” and
samples the data. However, their work comes from a volume
renderer point of view; thus, they focus on using concepts of
empty space skipping for renders rather than choosing
samples that will maintain data fidelity post-reconstruction.

To the best of our knowledge, our approach is the first
work to leverage OpenMP and GPUs to improve existing
importance-based sampling methods. Furthermore, our
approach enables CUDA HPC applications to retain their
high throughput performance by removing the need to
return to the host to perform sampling operations.

2 The International Journal of High Performance Computing Applications 0(0)

Background

Importance-based sampling

In many scientific simulations, there exist rapidly
changing regions of interest (ROI) that should be kept
with higher fidelity, as they are more important to domain
scientists. Biswas et al.’s importance-based sampling
method (Biswas et al., 2018) and our spatio-temporal
hybrid data sampling method (Fulp et al., 2020) take a
biased sampling of data that over-represents rare values
without neglecting common values. However, our hybrid
sampling method also leverages the dataset’s temporal
properties to enable higher post-reconstruction data
quality, overall and within the ROI. It accomplishes this
by comparing data regions of consecutive time-steps
using histogram intersection or root-mean-squared er-
ror (RMSE) and reuses similar previous regions.

Overall, Biswas et al.’s non-reuse sampling method
consists of five key steps, as detailed in Figure 1: 1, 2, 3, 6,
and 7. In contrast, our spatio-temporal hybrid data sampling
method consists of all eight steps in Figure 1.

Step 1. Data Histogram Creation: The first step in both
methods is to create a histogram of all data values in the
current time-step. When creating this histogram, the user
defines the number of histogram bins, and the histogram
range is set to the minimum and maximum values of the
current time-step’s data.
Step 2. Data Histogram Sorting: Both methods then
sort the resulting histogram bins from least to greatest.

The resulting list of bins is used to develop an acceptance
function that biases more rare data values.
Step 3. Acceptance Function Development: Using the
sorted histogram, both methods develop an acceptance
function that determines the acceptance rate for values that
are within each bin’s range. Using the user-defined sample
ratio, each method determines the target number of samples
to keep and divides this among all bins. Following this, each
method iterates over the sorted histogram bins to determine
whether the data values in the bin’s range are more than the
target number of samples per bin. If there are more values
than the target, eachmethod sets the total samples for that bin
equal to the target number of samples. However, if there are
fewer data values than the target, the total samples for that
bin are set to the number of data values.When a bin does not
utilize its entire sample budget, the unused budget is re-
distributed among all remaining bins. Once each method
determines the number of samples to keep per bin, they
divide this number by the data values in the corresponding
bin to create an acceptance rate between 0 and 1. This
ensures a majority of rare data values are kept while still
allowing for some of the more common values.
Step 4. Region Histogram Construction: Before
sampling, the hybrid data sampling method divides each
time-step into equally sized regions. Then, the data within a
region of the current time-step is compared to the corre-
sponding region of the previous time-step. This comparison
either uses histogram intersection or RMSE, depending on
the user’s specification.When using histogram intersection,
the hybrid data sampling method requires an extra step to
create histograms for each region of the current time-step.

Figure 1. An overview of our spatio-temporal hybrid data sampling method process.

Hickman Fulp et al. 3

These histograms use the same number of bins as before,
but the histogram range is set to the minimum and max-
imum values one expects throughout the simulation’s
lifetime. While the exact minimum and maximum are not
always known before the simulation finishes, we use a
speculative range for the purposes of our work. If our
algorithm encounters a value outside the range, it places the
values into the first or last bin depending on which side of
the range the value falls outside of. Overall, using a range
closest to the true lifetime range will yield the best quality.
These results are saved for the next time-step’s comparison
step to avoid excess computations.
Step 5. Region Comparison and Reuse: Using the
histogram intersection or RMSE metric, the hybrid data
sampling method next compares each region of the
current time-step with the corresponding region of the
prior time-step. If the histogram intersections are above
the intersection threshold or if the error is below the user-
defined threshold, the hybrid method flags the region for
reuse. When previous time-step information is not
available, the hybrid data sampling method uses Biswas
et al.’s non-reuse sampling method.
Step 6. Random Number Generation and Sample
Stenciling: At this stage, both methods determine which
samples to save. For each data value, both methods
generate a random value between 0 and 1. If this value is
less than the acceptance rate and the data value is not in a
region previously planned to be reused, the sampling
method flags the data value to be kept in the sampling
stencil.

The non-deterministic behavior of random sampling may
raise concerns among some users who require consistent and
reproducible results, as the nature of random operations may
affect the comparability of results. If the results differ signifi-
cantly depending on the random seed or the particular subset of
data selected by the random sampling, it may be challenging to
make valid comparisons between the algorithms. Our method
resolves the non-deterministic nature of random sampling by
using themulti-criteria importance analysis fromBiswas et al. to
ensure it clusters the samples it takes around the region of
interest. Utilizing a random sample approach in this step of the
ExaAM dataset (see Figure 1; 100 trials, 5% sample ratio)
introduces a 2.7 dB standard deviation and an average PSNR of
38.5 dB. Using the deterministic systematic sampling method
ensures the consistency and reproducibility of the results. The
same experiments had a standard deviation of zero; however,
they only reached a PSNR of 18.3 dB because they do not
sufficiently sample the region of interest leading to large errors,
which degrade accuracy. Therefore, having some randomness
included in the process is preferred despite its non-deterministic
nature, as it is designed to balance the need for randomness with
the need for representative samples.

Step 7. Gathering Sample Data: Our method then uses
the resulting sampling stencil to collect information on the
chosen samples and appends them to the sample data array.
When storing information on a value’s location, ourmethod
saves a single global index value rather than three indi-
vidual coordinate values. Our method calculates this global
index value as int(x + y*XDIM + z*XDIM*YDIM). By
operating in this manner, our method introduces a storage
overhead of only 2× in the number of samples, as opposed
to the 4× overhead of storing the coordinates separately.We
consider this overhead when we compare our method to
other data reduction methods in later sections.
Step 8. Additional Random Sampling: As the hybrid
data sampling method reuses regions, it may not use the
entire sampling budget. To rectify this, it determines the
number of extra samples it should collect and randomly
distributes this amount among all regions that it sampled this
time-step. Similar to before, it uses this information to de-
termine a new acceptance rate and begins a random sampling
pass. This ensures that it uses all of the sampling budget to
achieve the highest post-reconstruction quality possible.

Reconstruction

In our workflow, to visualize and analyze the effectiveness of
our samples, we first restore each time-step back to full reso-
lution. We use a linear interpolation-based reconstruction using
a Delaunay (Delaunay et al., 1934) triangulation to reconstruct.
To begin, this reconstruction method uses the stored sample
points to build interpolation triangles. It then uses these triangles
to interpolate each missing data point. The reconstruction
method uses a weighted average of the three triangle vertices to
rebuild a missing data point. The weight associated with each
vertex is dependent on the distance from the target data point.
Finally, the reconstruction method reconstructs the data point
using the vertex values and their weights.We use this method as
a balanced trade-off between quality and speed, whereas
generally, the higher order the interpolation is, the better the
quality but the slower the process.

Optimization strategies

To improve application performance, many developers le-
verage thread-level parallelism interfaces such as OpenMP and
CUDA. OpenMP1 is a CPU multi-threading programming
interface that enables users to improve the throughput of highly
parallelizable tasks. CUDA2 is a parallel programming in-
terface that enables users to improve the throughput of highly
parallelizable tasks through a CUDA-enabled graphics pro-
cessing unit (GPU). Each of these widely used interfaces
provides different advantages and disadvantages.

4 The International Journal of High Performance Computing Applications 0(0)

Data sets

ExaAM. The Exascale Additive Manufacturing Project uses
exascale simulations to design Additive Manufacturing
components (Belak et al., 2019; Jibben 2020). We use
108 time-steps with its full spatial resolution of 20 × 200 ×
50. Figure 2 shows time-step 64, with highlighted ROI, the
hottest portion of the visual.

Hurricane Isabel. The Hurricane Isabel Data models the
2003 hurricane in the west Atlantic region (Hurricane ISABEL
Simulation Data 2019). In the following experiments, we use the
pressure variable, as it provides a distinct representation of the
eye of the hurricane, theROI of this data set (Figure 3(c)).Weuse
48 time-steps of the full resolution, 500 × 500 × 100.

Asteroid Impact. The Deep Water Impact Ensemble data set
represents the study of the impact of an asteroid in deep
ocean water to learn the limit of dangerous asteroids
(Patchett and Gisler 2017). We use the full spatial resolution
of 300 × 300 × 300 over 100 time-steps. We use the water
volume variable, V02, as it visualizes the water splash. The
data values range from 0.0 to 1.0, where 1.0 is pure water.
Figure 4 shows time-step 22,388 of this data set, with
highlighted ROI (the water splash).

Determining input configurations

Our spatio-temporal hybrid sampling method has multiple
configurable parameters to allow the user to best select a
combination to yield a higher quality of reconstructed data
or higher reduction throughput, depending on their data set
and situation. This section examines the impact of various
input configurations and helps the user determine an optimal
configuration for their situation. We refer to our findings as
“an optimal” configuration, as there is often not one sole
configuration that yields the overall highest quality and
bandwidth, but rather a range of trade-offs.

Number of bins

Both our hybrid method and Biswas et al.’s non-reuse
method rely heavily on the histogramming of the input

data. This is especially true for our hybrid method, as it uses
histogram intersection to determine whether to reuse re-
gions or not.

As simulations develop, the optimal number of histo-
gram bins may change. However, as our hybrid method uses
histogram intersection to determine whether to reuse re-
gions or not, we must maintain a consistent number of bins
to ensure we make an accurate comparison. Furthermore, as
both methods are designed to run in situ, we only have
access to the first time-step to determine an optimal number
of bins. With this in mind, both methods are designed and
operate best with smooth simulations.

While the user could manually set this parameter if they
had extensive knowledge of the dataset, we aim to provide a
generic approach such that no previous knowledge of the
data is required. If the user does not know how to set the
number of bins properly, we provide an optimization step as
detailed in Section 4.1.1.

To better understand how the number of bins affects
our hybrid method, we evaluate the three regions
specified in Figures 3(a) and (b) from the Hurricane
Isabel data set. We first analyze the amount of inter-
section between two histograms at the same region in
neighboring time-steps, as we vary the number of bins
used. Figure 5 shows that there is less intersection as we
increase the number of bins. Using more bins, we parse
values out to more specific bins, reducing the areas
where both histograms overlap. This correlation is es-
pecially true within regions of high entropy, like region
A. This is concerning as, without enough intersections,
our hybrid method is left unoptimized and rarely utilizes
previous samples. However, while fewer bins enable our
hybrid method to group more items, too few bins lead to
excess intersections and high levels of error in the
resulting data.

While the user can specify any percentage of histogram
intersection as a threshold for determining whether to reuse
samples from a previous region, we choose to reuse only
when both histograms are identical. This approach enables
us to maintain high data fidelity. We conduct an in-depth
study on how histogram intersection threshold affects the
number of regions reused and the resulting reconstructed
data quality in Section 4.2. Figure 6 showcases how the

Figure 2. ExaAM time-step 64 with highlighted ROI.

Hickman Fulp et al. 5

number of bins used affects the percentage of reused re-
gions, independently of dataset and region size. From this
figure, our results show that using a higher number of bins
leads to much lower levels of reuse for all regions sizes

tested. Similarly, when using too few bins, too many regions
are reused.

Determining an optimal configuration. To assist users in de-
termining an optimal number of histogram bins when using our
hybridmethod orBiswas et al.’s non-reusemethod,we run a pre-
processing step using existing algorithms to suggest an optimal
number of bins based on data from the first time-step. While
Sturges’ rule for estimating an optimal number of bins is widely
recommended, it is only optimal for Gaussian data (Scott 2009).
Therefore, we useDoane’s rule (Hyndman 1995;Doane 1976), a
modification to Sturges’ rule that works better with non-normal
data sets. Secondly, we use Scott’s rule (Scott 2010), which is
more statistically rooted and takes both data size and variability
into account, and works well with large datasets.

We use Doane’s and Scott’s rules to provide users with a
range of bins to consider using with their dataset. To better
assist users, our pre-processing step also collects a few
samples and reconstructs the data to estimate what resulting
data quality using each of these bins will yield. Using this
information, our pre-processing step recommends the

Figure 3. Hurricane Isabel Pressure Visualizations. Figures (a) and (b) show the dataset divided into regions of dimension 25 × 25 × 25.
Figure (c) highlights our definition of Region of Interest for this dataset.

Figure 4. Impact time-step 22,388 with highlighted ROI.

Figure 5. Amount of Intersection with varying bins at three
regions of Hurricane Isabel (see Fig. 4).

6 The International Journal of High Performance Computing Applications 0(0)

number of bins that yield the highest quality. Since we only
want an estimation of the quality to assess which number of
bins is most optimal, we use an OpenMP accelerated version
of nearest neighbor’s reconstruction, which is faster but lower
quality than other reconstruction methods. Thus, the over-
head of this process depends heavily on the time it takes to
sample and reconstruct the first time-step of the dataset twice.

With a sample ratio of 1%, this pre-processing step has
an average overhead of 0.2% of the entire sampling process,
slightly varying as the input data set size and number of
time-steps increases. The majority (≥93%) of this step is
spent in the reconstruction and quality analysis phase. This
is an acceptable temporal trade-off, as this configuration
process only needs to be run once per data series and, as
determining the number of bins to use is a complex problem,
this step assists users in determining the input that leads to
the highest overall quality.

Since our pre-processing step determines an optimal
number of bins based only on the first time-step of the series,
it is possible that it does not yield the absolute optimal
number of bins for the average time-step in the series.
However, our Hybrid sampling method is designed to utilize
temporal similarities; thus, it works best with datasets that
change smoothly over time. Assuming the input data is
smooth, Figure 7 shows that choosing the optimal number
of bins for the first time-step and using that throughout
sampling the rest of the series yields the same quality as if
we were to recompute the optimal number of bins for each
time-step independently. Thus, while our method does not
always yield the absolute optimal number of bins, it does
provide a more near-optimal option than a user could choose
at random.

Figure 8 demonstrates the effects of using this pre-
processing step with Biswas et al.’s non-reuse method,
while a similar experience is seen with our hybrid method.
This figure shows that the quality achieved with a certain
number of bins and the first time-step reflects the average
quality of the first 10 time-steps. We compare against the
first 10 time-steps only as our method aims to work with

smooth simulations and, as a result, these first ten time-
steps are representative of the overall simulation.
Therefore, while our pre-processing step only uses the
first time-step to determine what number of bins to use, it
continues to be an optimal configuration as the data
series progresses. For example, Figure 8(a) shows that
given the ExaAM dataset, a user could choose to use an
input of 10 bins, resulting in an overall PSNR of 42 dB.
However, by using our pre-processing step, the user
would find using 633 bins to be more optimal in terms of
quality, yielding a PSNR of 60 dB.

We use the number of bins recommended by this pre-
processing step for each dataset, as listed in Table 1.

Histogram intersection threshold

Histogram intersection uses a user-set histogram threshold to
determine whether to reuse the region or not for the following
time-step, as long as the region’s histogram intersection is
higher than the threshold. In this work, we ran all datasets on a
100% intersection threshold, meaning we only reused samples
in a region where the histograms are 100% identical. This
ensures that the distribution of data values are the same in the

Figure 6. Percentage of previous regions utilized, varying number
of bins and region sizes.

Figure 7. Using a consistent number of bins yields equivalent
quality to varying number of bins per time-step (ExaAM).

Hickman Fulp et al. 7

regions that are reused and yields a higher post-reconstruction
quality. As the histogram threshold is made less strict, more
blocks are reused. Reusing more regions introduces more
error, lowering the post-reconstruction quality. However,
there is a trade-off where we can lower the tolerance,
reuse more regions, and meet nearly the same PSNR. The
more regions reused, the fewer new samples that need to
be taken for that time-step, meaning less time is spent
sampling regions.

To showcase the relationship between histogram
threshold, quality, and block re-usage, we test various
histogram intersection tolerances for various datasets, as
shown in Figure 9. For the ExaAM dataset, as the histogram
intersection threshold approaches 60%, there is no change in
PSNR because there is no change in the number of blocks
reused. However, between 60% and 75%, as the percentage
of blocks reused decreases, less error is introduced, and the
quality increases. Between a threshold of 75% and 100%,
the PSNR only has an increase of 5%. This trend signifies
some optimum trade-off between the speed at which the
sampling operation can be performed by performing fewer
sampling operations and reusing more previously gathered
samples, but at the cost of data quality. However, for all
datasets, the most optimum threshold, in terms of quality,
exists at the fewest number of blocks reused. Since this
article focuses on achieving high quality of a post-
reconstruction dataset, we continue to use a threshold of
100% to maximize PSNR for our tests to determine the
effectiveness of our method. Still, the effectiveness of
histogram intersection heavily depends on the dataset itself.

The impact of the histogram intersection threshold is
more apparent for a dataset similar to the ExaAM dataset,
where regions rapidly change through time. On the other
hand, the Asteroid Impact dataset shows no improvement in
performance when the histogram intersection decreases. As
a matter of fact, for that dataset, in particular, the best
histogram threshold is at 100% since the regions across
time-step remain similar. Thus, if the domain sees little
change between time-steps, we suggest a histogram inter-
section near 100%. As the domain changes more rapidly, a
lower histogram intersection value is recommended.

Error threshold

When using RMSE to compare regions over time-steps, we
use a user-set error threshold to limit the amount of error
allowed when utilizing previous samples. As a generic
standard to determining this threshold, we calculate the
difference of each corresponding data value between the
first two time-steps. We use the third quartile of this list of
errors as the error threshold. This allows enough error to
utilize previous samples while not negatively affecting the
reconstructed quality.

With a sample ratio of 1%, this pre-processing step has
an average overhead of 0.03% of the entire sampling
process, varying as data set size and number of time-steps
varies. As with the previous pre-processing step, providing
the user with a configuration that leads to better overall
data quality outweighs the small amount of overhead
introduced.

Figure 8. The average quality of the first ten time-steps, varying number of bins (Non-Reuse Method).

Table 1. Datasets and configurations used in experimental evaluations.

Dataset Variable Dimensions Data size, MB Steps Region dimensions BINS Error threshold

ExaAM - 20 × 200 × 50 0.8 108 10 × 40 × 10 633 0.0
Isabel Pressure 500 × 500 × 100 95 48 25 × 25 × 25 27 28.0
Impact V02 300 × 300 × 300 108 130 50 × 50 × 50 27 0.0

8 The International Journal of High Performance Computing Applications 0(0)

Figure 10 shows how the quality of the reconstructed
data is affected by varying the error threshold when gath-
ering samples. This figure shows that the suggested error
threshold yields one of the highest qualities for the first
time-step and across the first ten time-steps.

We use the error threshold recommended by this pre-
processing step for each dataset, as listed in Table 1. With
two of the datasets tested, the third quartile of the error
distribution is equal to zero because they change smoothly
over time, causing the difference between the first two time-
steps to be very low. Even with an error threshold of 0.0,
there are still enough similarities between regions to con-
sider samples reusable.

Number of regions

Setting an appropriate region size is critical for optimal
performance of our hybrid method, as a region size too
small or too large affects overall efficiency. We evaluate the
effects of different sized regions and quantify their impact in
Figure 11. In this assessment, we compare the average
percentage of regions utilized from time-step tk�1 when
gathering samples for time-step tk, of the first 10 time-steps.
Our method utilizes more samples from tk�1 when we
divide the dataset into more regions than when using fewer
regions. The more regions we divide the dataset into, the
smaller and more specific the amount of data within them
becomes, allowing us to be more specific with the infor-
mation we are reusing. By utilizing more regions, we have
access to more samples, which generally correlates to a
higher post-reconstruction quality. Thus, if the user wants
the highest qualities possible, they would use a larger
number of regions. Consequently, breaking the data into
more regions also increases the number of similarity
comparison computations across each time-step. Figure 11
shows that by introducing more comparisons, the sampling
algorithm is drastically slowed down. Therefore, when
determining the number of regions to divide the data set, the
user must set focus on higher post-reconstruction quality,
higher bandwidth, or some trade-off of both.

Determining an optimal configuration. To aid the user in
choosing an optimal number of regions for their situation,
we provide plots of the percentage of regions utilized and
bandwidth versus the number of regions, for a subset of the
number of regions possible. Given these plots, the user
visualizes the quality-bandwidth trade-off and chooses their
number of regions according to whether they value accuracy
or speed more.

While an exhaustive study of providing results for every
possible region dimension would yield a more specific plot,
this would introduce a costly overhead that outweighs its
benefits. Thus, we use a distributed subset of 10 region
dimensions, as it lowers the temporal overhead while ad-
equately representing the trends.

With a sample ratio of 1%, the average introduced
overhead of this pre-processing step is ≤3% of the entire
sampling process. Similar to before, we deem this overhead
as an acceptable trade-off, as this process provides the user
with configuration parameters better suited to their data set.

For example, given the ExaAM dataset, if the user
were to use 1000 regions, they would reuse between 90%
and 100% of their regions. While this results in higher
data quality due to the space saved from reuse, it does lead
to lower overall bandwidth, as seen in Figure 11(a). Our
method provides the user with the trade-off graph, and,
given this information, they are well-equipped to deter-
mine the most suitable number of regions for this
current work.

Throughput improvements

As our hybrid data samplingmethod aims to work with HPC
applications, we must address its lower throughput. Often,
researchers use parallelization strategies such as OpenMP
and CUDA to improve application performance. With this
in mind, we develop two distinct parallelization approaches
to our method. The first approach uses OpenMP to optimize
key steps within our method. Similarly, in the second
parallelization approach, we create separate CUDA kernels
for each key step within our method, which we run on an

Figure 9. Reconstruction accuracy and percent of previous regions utilized as the histogram threshold changes.

Hickman Fulp et al. 9

NVIDIA Telsa V100 GPU. The design of both of our
parallelization approaches is seen in Figure 12. We also
parallelize Biswas et al.’s non-reuse importance-based
sampling method for later comparison using this same
design.

Design methodology

Step 1. Data Histogram Creation: As histograms are
critical to both methods, parallelizing their creation is
crucial. In our OpenMP approach, we parallelize the
creation by dividing the data values equally among all
threads. Each thread constructs a private data histogram
and, upon processing all data values, atomically adds its
results to a global histogram. In our CUDA approach, the
histogram kernel assigns each input element to a thread,
using 1,024 threads per block. As CUDA threads run in
warps of 32, it is important that this thread block size be a
multiple of 32 so that the warps do not have any idle
threads. Then, each block zeros a privatized histogram
array in shared memory, and threads compute an
address and increment the appropriate bin using atomic
operations. This use of shared memory means fewer

contending threads on each histogram bin and shorter
access latency to the bins than a more straightforward
approach using only a global histogram. Finally, each
block accumulates its local histogram into the global
histogram using atomic operations.
Step 2. Data Histogram Sorting: When sorting his-
tograms, we choose to leverage existing histogram

Figure 10. The average quality of the first ten time-steps, varying error threshold (Error-Reuse Method).

Figure 11. Sampling bandwidth and percent of previous regions utilized as the number of regions varies (Histogram-Reuse Method).

Figure 12. Optimization strategies implemented for each key
step of our spatio-temporal hybrid data sampling method.

10 The International Journal of High Performance Computing Applications 0(0)

sorting libraries. In our OpenMP approach, this step is
done sequentially to leverage the built-in stable sort
algorithm. In our CUDA approach, our histogram sort
CUDA kernel uses a fine-grained level of parallelism
with the standard Thrust libraries Radix sort algorithm,
which has been shown to be “considerably faster than
alternative comparison-based sorting algorithms such as
Merge Sort” (Bell and Hoberock 2012).
Step 3. Acceptance Function Development: One step
that we cannot parallelize is the acceptance function step,
due to its iterative nature. We leave this step as sequential
as each iteration of the development process relies on the
previous iteration, as we detail in Step 3 in Section 3.1.
Even though this step is sequential, this does not limit our
throughput improvement much as this step represents a
very small portion of both sampling methods, as it is only
dependent on the sorted histogram.
Step 4. Region Histogram Construction: Before our
hybrid data sampling method compares regions for re-
use, it must first construct histograms for each region of
the current time-step. In both of our parallelization ap-
proaches, we reuse the same process as the initial his-
togram creation from Step 1.
Step 5. Region Comparison and Reuse: The process of
comparing regions for reuse consists of two sub-steps
and depends on whether we compare regions with his-
tograms or error. When comparing histograms, we cal-
culate the histogram intersection of each current time-
step region histogram with the corresponding region
histogram of the previous time-step. If the intersection is
above the intersection threshold, we mark the region for
reuse. When comparing error, we calculate the RMSE
between each current time-steps region and the corre-
sponding region of the previous time-step. If the error is
below the error threshold, we mark the region for reuse.
Once each region is marked for reuse or not, we move to
the utilization decision kernel, which analyzes the results
and sets the necessary information for reuse regions so
that they are not sampled in the sampling step.

This process is highly parallelizable, at a per-region
level, as each region of subsequent time-steps can be an-
alyzed independently. Thus, in our OpenMP approach, we
divide the data regions among all threads. Each thread then
determines whether to mark their regions for reuse or not
and sets the necessary information for reuse regions. In our
CUDA approach, we use a similar coarse-grained level of
parallelism and assign each set of regions to a separate
CUDA thread.

Step 6. Random Number Generation and Sample
Stenciling The sampling process of each method is also
highly parallelizable and consists of two sub-processes:
generating random values and setting the sample stencil.
In our OpenMP approach, we generate random numbers

in parallel, varying the random seed per-thread id. When
creating the stencil, we divide the data values equally
among all threads and use the random values to deter-
mine the stencil value for each of their data values.
In our CUDA approach, we use a fine-grained level of

parallelism and assign a single data value to each CUDA
thread with 1000 threads to a single thread block. Following
this, each thread generates a random number using the CU-
RAND library (Nvidia, 2010). We use this library when
generating random values as this library ensures each thread
has a separate unique sequence of random values. Each thread
uses its random value and data value to determine whether to
keep the data value as a sample and, if so, sets the necessary
value in the sampling stencil.

Step 7. Gathering Sample Data Using the resulting
stencil, both methods must next gather the corresponding
samples. In our OpenMP approach, the stencil is equally
divided among all threads. Each thread uses the stencil to
collect its respective sample data into private sample data
arrays. Once the thread finishes processing the stencil,
the resulting sample data arrays are concatenated to
assemble the final sample data array. This process is kept
sequential in our CUDA approach as a varying number
of samples are collected for each time-step.
Step 8. Additional Random Sampling: As a final step,
our hybrid method fills any empty space in the sampling
budget with further random samples. In our OpenMP
approach, the desired number of samples is split among all
threads, and a similar process to the stenciling process
occurs. Similarly, in our CUDA approach, we use a fine-
grained level of parallelism and assign a single data value
and a new random number to each CUDA thread with
1000 threads to a single thread block. Each thread calcu-
lates the new sample rate and uses the random number to
determine whether to keep the data value as an additional
sample. In both cases, all new samples must not occur
within a reuse region.

Parallelization analysis

Applying our OpenMP and CUDA approaches to Biswas
et al.’s non-reuse method and our hybrid data sampling
method, we move to evaluate the resulting throughput
of each.

Datasets and system. When conducting our experiments,
we use an NVIDIA V100 GPU (NVIDIA, 2020) on
Clemson’s Palmetto Cluster (Palmetto Cluster, Clemson
University, 2021) along with two 20-core Intel Xeon
6148G CPUs with 372 GB of memory. When using
OpenMP, version 3.1.4, we use 10 threads as we found
this to be an optimal number of threads, as seen in
Figure 13. We use CUDA version 10.0.130 and GCC

Hickman Fulp et al. 11

version 7.1.0, as this is the maximum supported GCC
version for our CUDA version.

In our experiments, we evaluate each method using three
HPC data sets and three sampling ratios: 0.5%, 1%, and 2%.
Table 1 describes the details of each data set and the input
parameters we use for sampling (as chosen in Section 4).

Optimization effects on process throughput

Using our three data sets, we evaluate the throughput of
each of our eight sampling sub-process kernels. Figure 14
shows the average bandwidth of steps 1–8 for each dataset,
sampling method, and optimization strategy, calculated as
the average of all time-steps in each series, using a 2%
sample ratio.

Step 1. Data Histogram Creation Kernel: With the
larger datasets, the accelerated CPU implementation of
Step 1 has a 3× to 8× improvement over the serial
version. However, with smaller datasets, such as ExaAM
(0.8 MB per time-step), we see lower throughput due to
the OpenMP overhead not being outweighed by the data
size. When using CUDA, we find a 700× to 900× im-
provement in bandwidth to a serial implementation, as
shown in 19b. This is a significant speedup to even the
previous CUDA approach, due to its optimized use of
shared memory.

Specifically, due to our histogram kernel optimizations
explained in Section 5.1, we are capable of reaching speeds
of 200 GB/s. This throughput of histogramming is com-
parable to Tian et al., who experimented with a state-of-the-
art design, reaching speeds of 252 GB/s with similarly sized
data (Tian et al., 2021).

Step 2. Data Histogram Sorting Kernel: When evalu-
ating our parallelized histogram sorting step, we find our
OpenMP implementation yields a 1.2×, except for the Isabel
dataset, in which it performs as fast as serial. However, the
CUDA Thrust Radix sort does not achieve as high of a

throughput as serial, due to the small number of bins needed
to be sorted. With more bins to be sorted, we would better
leverage the capabilities of this sorting algorithm.
Step 3. Acceptance Function Development Kernel:
Step 3 is performed sequentially in all experiments,
however, when this sequentially limited process is run on
a single GPU thread, the overall throughput is lower than
the CPU and accelerated CPU versions. While we could
transfer the data back to the CPU to achieve better
performance, we choose to keep the process on the GPU
to avoid the memory transfer overhead, as it would re-
duce the resulting overall throughput improvement.
Step 4. Region Histogram Construction Kernel:
When evaluating our parallelized region histogram
creation step, we find that both OpenMP and CUDA
achieve higher throughput than serial. When using
OpenMP, we find a consistent 3× improvement, but as
the OpenMP version must aggregate the results of all
threads at the end of each histogram creation step, its
throughput improvement is limited. In contrast, the
CUDA implementation does not have this issue and
achieves between 17.12× and 54.89× improvement over
serial, with more improvement with smaller datasets.
Step 5. Region Comparison and Reuse Kernel:When
assessing our parallelized region comparison and re-
use step, we find unique results for both the Error-
Reuse and Histogram-Reuse variants of the hybrid
method. While in serial and with OpenMP, the Error-
Reuse version leads to the lowest throughput, this is
not the case on a GPU as CUDA threads efficiently
handle the RMSE and utilization processes. For the
error-based methods, we calculate the RMSE between
two lists of sample values. We break this down into a
thread per region, such that the RMSE for each region
is calculated in parallel. However, that still results in a
small calculation with very little data.

The opposite is true for the Histogram-Reuse version,
which sees lower CUDA throughput due to the extra

Figure 13. Average Bandwidth (MB/s) of OpenMP accelerated sampling process with varying number of threads.

12 The International Journal of High Performance Computing Applications 0(0)

necessary computations and data accesses needed to
compare the histograms of regions. We see lower CUDA
throughput due to the limitations this step has. In Step 5, we
do not access all of the data in the region. With Histogram-
Reuse, we only compare the histograms of each region to
the corresponding region in the following time-step,
yielding significantly fewer data elements to compare. For
the histogram-based method, we only need to perform a
single operation per region: calculating the intersection
between the two histograms. This calculation uses a rela-
tively small number of bins, with the Isabel and Impact
datasets only using 27 bins each.

Both methods result in a single comparison operation
being performed per region. Due to the low intensity of
operations needed to compare a region, parallelizing the
comparison process into a coarse-grained breakdown
yields the most improvement possible. However, to
calculate the histogram intersection and RMSE, we need
to access two groups of data since we are comparing two

lists of data from two time-steps, located in different
memory locations. This is what significantly slows down
the step overall.

Step 6. Random Number Generation and Sample
Stenciling Kernel: Upon assessing our parallelized
random number and stencil step, we find our CUDA
implementation using CURAND drastically outperforms
both serial and OpenMP. Specifically, we find our CUDA
implementation achieves between 4.45× and 186.7×
improvement over serial, with more improvement with
smaller datasets.
Step 7. Gathering Sample Data Kernel: Upon as-
sessing our parallelized sample-gathering step, we find
our OpenMP implementation outperforms other im-
plementations, with an average 24× improvement over
serial. Due to the need for resizable arrays, we leave the
sample-gathering process as a sequential process for
CUDA. Step 5 involves arrays with an unknown, non-
static size, creating the need for resizable arrays. In

Figure 14. Average throughput per sub-process steps 1–8 per dataset and optimization technique (2% sample ratio).

Hickman Fulp et al. 13

CUDA, adding this functionality would introduce sig-
nificant overhead, making it inefficient overall. Thus, we
find similar performance levels for CUDA and serial.
However, we use OpenMP to divide and conquer this
step, leading to higher throughput.
Step 8. Additional Random Sampling Kernel: When
evaluating our parallelized additional random sampling
step, we find our CUDA implementation outperforms
both OpenMP and serial. Specifically, we find our
CUDA implementation achieves between 40.74× and
105.6× improvement over serial (Figure 15).

Parallel performance observations

From our evaluation above, we find that using CUDA or
OpenMP drastically improves many steps in the sampling
process of both importance-based methods. However, it is
also critical to understand how each parallelization strategy
affects each sampling method’s overall performance.
Figure 16 shows the average overall bandwidth for each
dataset and parallelization technique, while Figures 17 and
18 show each parallelization strategies performance im-
provement over the serial implementation.

From these figures, we find that using CUDA improves
the sampling processes’ overall throughput tremendously.
When looking at Figure 16 we find CUDA throughput range
from 1211 to 3993 MB/s for all data sets, while running
these methods in serial only achieves between 63 and
196 MB/s. Additionally, previous implementations of
Biswas et al.’s importance-based sampling method were
only capable of achieving throughput on the order of tens of
megabytes (Biswas et al., 2018, 2020b).

First, looking at the specific improvements with the
importance-based method, OpenMP reaches a 1.17 to 1.64×
improvement. The CUDA implementation reaches between
15.75 to 25.26×, as even though some steps are slower on
the GPU, they are outweighed by the improvements in the
target slowdown steps (Steps 4, 5, 6 and 8).

With the Histogram-Reuse method, the OpenMP version
only reaches a sampling throughput comparable to (1.13×)
or lower than (0.76×) the serial version. This is due to Steps
5, 6, and 8, as discussed in the previous section. However,
the CUDA version improves Steps 4, 6, and 8, yielding an
overall 8.40× to 24.65× speedup over serial.

Likewise, the OpenMP version of error-based reuse
suffers with Steps 5 and 6. However, since it does not have
to compute histograms per method (Step 4), it is able to
achieve an overall improvement between 1.17 and 1.93×
when using 10 threads. As the number of samples increases,
more computations are needed to calculate the error be-
tween each sample and the coordinating new value at the
next time-step. Since this task will take a long time in serial,
we are able to better leverage OpenMP, yielding greater
improvements with higher sample ratios. The CUDA

version targets Steps 5, 6, and 8, yielding a 175×, 31×,
92.69× improvement over the serial implementations, re-
spectively (with the Impact dataset). These speedups allow
the GPU implementation to reach an overall improvement
greater than OpenMP, reaching a 22.54× to 52.70× speedup
over serial.

Our results show that the OpenMP implementation does
not achieve as high throughput as the CUDAversion. Many
of our method’s steps depend on the results from previous
steps. With this dependence, it is critical that when we can
parallelize our method that we do so to the greatest extent
possible. Using 1024 CUDA threads to parallelize the
parallelizable steps of our method is a more effective so-
lution than using the 10 OpenMP threads we found to be
optimal for sampling in Section 5.2. We attribute this dif-
ference to the low amount of thread divergence that occurs
within these parallelizable steps, making CUDA the optimal
choice. Overall, while the OpenMP implementation ach-
ieves higher throughput in some steps, our CUDA version
achieves the greatest improvement over the serial version of
each method.

Changing the core sampling algorithm

The novelty of our spatio-temporal hybrid sampling method
is that it utilizes samples from a previous time-step to
capitalize on similarities between neighboring time-steps.
The method by which we gather these samples, however, is
independent of our algorithm. We refer to this base method
as the “Core Sampling Algorithm” (CSA). Our method uses
the CSAwhen gathering samples for the first time-step and
in regions that do not reuse previous samples.

We have the ability to switch the CSA to any existing
sampling algorithm, which allows our method to maintain
relevance as the data reduction field grows. To show the
variance and usefulness of this ability, we use our sampling

Figure 15. Histogram bandwidth improvements found with
varying GPU kernel implementation.

14 The International Journal of High Performance Computing Applications 0(0)

Figure 16. Average Total Sampling Process Bandwidth for each dataset and parallelization technique.

Figure 17. OpenMP performance improvement over serial.

Figure 18. Cuda performance improvement over serial.

Hickman Fulp et al. 15

algorithm configurations with three different cores: Simple
Random, Importance-Based (Biswas et al., 2018), and
Multi-Criteria Importance-Based Sampling (Biswas et al.,
2020b). We describe Importance-Based sampling in Section
and Biswas et al. describe a multi-criteria importance-based
sampling algorithm that utilizes both the histogram of all
data values and the local gradient that gives both areas of
rare data values and abrupt change a higher priority of being
sampled (Biswas et al., 2020b).

To understand the effect the CSA has on our algorithm,
we first show how they distribute their samples, as shown in
Figure 19. Simple random sampling produces a uniformly
distributed sample set. The importance-based method biases
rare data values, so the samples are clustered around the
ROI. The multi-criteria importance-based sampling method
has the most samples in the ROI, as it gives a bias to rare
data values and data values with a high change in gradient.

The location of the samples heavily affects post-
reconstruction quality. Since the data values within the
ROI have high variance, taking more samples from this area
will better maintain its quality. However, areas of low
variance require fewer samples to maintain quality. Thus,
the multi-criteria importance-based sampling method yields
the highest post-reconstruction quality overall, as it takes
the majority of its samples from the high-variance areas.

Regardless of CSA, our hybrid sampling method can be
applied to increase post-reconstruction quality, as shown in
Figure 20(a). Figure 20(b) shows that there is a trade-off be-
tween quality and bandwidth. Overall, the more sophisticated
the CSA, the higher the quality, but the lower the bandwidth.

Unlike the other CSAs used, the multi-criteria
importance-based sampling control method does not have
the highest bandwidth. This method on its own takes the
longest to sample, as it takes both value and gradient into
consideration. When the histogram-based and error-based
reuse methods determine a region that will reuse previous
samples, we do not use this computationally heavy algo-
rithm for that region, which leads to faster sampling overall.

Through this study of core sampling algorithms, we have
shown that our spatio-temporal hybrid sampling method is
able to be used with any existingmethod of gathering samples.
The implication of this is that our approach stays relevant as
the field of data sampling grows. Thus, the performance of our
method is permanently influenced by the newest and

upcoming sampling algorithms. The minimum quality our
method achieves is the maximum of the CSA. Likewise, the
throughput of our method is limited by the speed of the CSA.
Thus, as faster andmore accurate sampling techniques emerge,
our method can continue to be used to improve quality.

Comparison to lossy compression

Quality

Our spatio-temporal method utilizes sampling methods;
therefore, we use sample ratio to refer to the amount of data
reduction, rather than compression ratio. This allows us to
achieve an exact overall reduction ratio and meet user
constraints, which modern compressors are unable to do
without trial-and-error or outside tools like FRaZ
(Underwood et al., 2020). In order to ensure a fair

Figure 19. Samples gathered by different Core Sampling Algorithms, Using ExaAM time-step 64 and a sample rate of 0.5%.

Figure 20. Quality and Bandwidth comparison with 1% sample
rate of ExaAM data set with varying core sampling algorithm.

16 The International Journal of High Performance Computing Applications 0(0)

comparison between compressors, we incorporate an
overhead factor that takes into account the additional
storage requirements of our sampling-based approach. We
convert a sample ratio (SR) to a compression ratio as 1/
(SR*2). This conversion factor reflects the fact that our
approach requires the storage of both the value and index of
each sample, hence the need to double the SR value.

Table 2 details the quality of each reconstructed dataset
interpolated from a set of samples at a rate of 0.5%, yielding
an overall reduction ratio of 100 : 1. We compare the re-
sulting interpolated quality with the decompressed quality
resulting from the GPU-optimized lossy compressor cuSZ
(Tian et al., 2020). Input parameters for cuSZ were chosen
to meet the reduction ratio of 100 : 1 as closely as possible.
Input parameters for cuSZ were chosen to meet the re-
duction ratio of 100 : 1 as closely as possible. However, due
to the compressibility limitations of the data, such com-
pression ratios are not feasible. We detail the maximum
achievable compression ratios using this compressor, and

the resulting PSNR of the decompressed values. The Error
Bound column in Table 2 lists the error bounding mode and
tolerance used per dataset. Any error bound larger than
listed introduces an unfeasible amount of error into the
dataset. For example, we compress the ExaAM dataset with
a relative error bound of 100 because anything beyond that
returns the same compression ratio of 22:1.

For the ExaAM dataset, we achieve a 2.4× improvement
over what cuSZ achieves in terms of quality. Our method
achieves higher quality because it excels with datasets with
a concentrated region of interest that moves in spatial lo-
cation quickly over time. With the Isabel and Impact da-
tasets, however, cuSZ yields a higher PSNR. Lossy
compression is able to preserve the data better because it
was not capable of meeting the target reduction ratio. Since
compression retained more of the true values when de-
compressed, it yields a higher quality.

Moreover, while data sampling aims to preserve the
region of interest, this is not necessarily reflected in the

Table 2. Data quality with varying data reduction methods at compression ratios 100:1 (equivalent sample ratio: 0.5%).

Dataset Method Reduction ratio Error bound PSNR Write time (s) Read time (s)

ExaAM No reduction 1:1 — Inf 0.097450 0.006124
— Histogram reuse 100:1 — 35.62 0.013151 0.000400
— cuSZ 22:1 Rel. 1 × 102 14.93 0.000706 0.000197
Isabel No reduction 1:1 — Inf 12.265770 0.180772
— Histogram reuse 100:1 — 39.12 0.696782 0.064536
— cuSZ 22:1 Rel. 1 × 101 61.20 0.002616 0.002107
Impact No reduction 1:1 — Inf 6.534960 0.190949
— Histogram reuse 100:1 — 15.64 0.175427 0.006367
— cuSZ 29:1 Abs. 1 × 10�1 37.00 0.004804 0.001965

Figure 21. Samples gathered by Our Sampling Algorithm, using varying datasets and a sample rate of 0.5%.

Hickman Fulp et al. 17

quantifiable PSNR of the overall dataset. As detailed by
Grosset et al. (Grosset et al., 2020), sampling alone is unable
to effectively preserve the details of this dataset, and
compression is recommended oversampling when trying to
achieve high quality for highly detailed datasets. However,
achieving a high-quality post-reconstruction is not the sole
goal of data sampling.

Figure 21 shows only the samples gathered with our
method for each dataset. This shows our purpose of taking
samples is not necessary to reproduce the exact input data,
but rather to obtain a summary of the data. Once the end user
is able to quickly analyze the summary, the samples have the
capability of being interpolated to reflect the full-resolution
data. However, if it is not necessary, we do not have to spend
the temporal overhead in reconstructing the data. For ex-
ample, with the Impact dataset, the domain scientists are
explicitly interested in the asteroid during the entry into the
water (Patchett et al., 2016; Ahrens et al., 2014). Likewise,
the ExaAM and Hurricane Isabel datasets contain features
(hottest portion and the hurricane eye, respectively) that are
the crux of what needs to be studied. Patchett et al. (Patchett
and Ahrens 2018) found that while data sampling was too
coarse to capture fine details of the data, it could be applied
to summarize the feature at a coarse-level detail until a time-
step was found that gained enough interest to warrant a full-
resolution version. This is a direct contrast to compressors,
which need to decompress the data before the data can
provide any useful analysis.

Data movement

When comparing the read and write times of our sampling
process, we do not include the reconstruction step. As part
of the in situ visualization process, the time to store, load,
and render data offsets the amount of information gained by
studying the data. The set of samples gathered yields a
summary of the data, rather than the memory-intensive,
high-resolution dataset. While higher-resolution data are
necessary for presentations and visualizations, it is im-
portant for end users to be able to quickly determine whether
a feature is of scientific interest by working with smaller,
more quickly stored, loaded, and visualized intermediate
data (Patchett and Ahrens 2018). After the low sampling
rates are used to quickly display key features across time-
steps, the most important visuals can be downloaded at
higher resolutions.

Table 2 details the time to perform data movement
operations. We have broken these operations down into the
time to perform a read and a write operation with the data.
The Write Time column records the number of seconds
necessary to write the data to a binary file. In the no-
reduction case, we have to write all of the data values to
the file. However, with our Histogram-Reuse method, we
only store 0.5% of the total data points. This allows for

faster write times, as less data needs to be moved. We record
this time as the number of seconds needed to reduce the
data, then write the reduced data to a binary file. Our
sampling method yields an average 20.75× speedup in data
movement over the no-reduction times, with increasing
improvement in larger datasets.

We also compare the time to compress and move the
reduced data with the GPU lossy compressor cuSZ (Tian
et al., 2020). Using cuSZ achieves an average speedup of
1546.6× over using no reduction. The drawback of using
data sampling instead of compression is that both the values
of samples and the spatial location of each sample needs to
be saved. Since we have to write two different lists of data,
our method sees longer write times than lossy compression
that only needs to write its compressed data to one file.

Second, we analyze the data movement of reading the
data back in. We record the Read Time column as the time it
takes to read in the reduced data to be analyzed. Since our
sampling method needs to read in a smaller file, we see an
average improvement in read times of 48.1× over no re-
duction. Moving the data with cuSZ however, yields an
average improvement of 71.4×. Just as with the disad-
vantage of sampling and writing to files, reading data
samples from files has a disadvantage because we have to
gather the sample data from two files. Reading and writing
from a single file is generally faster than working with two
smaller files due to the overhead of managing multiple files.
Each file requires the system to open a file handle, read the
contents, and then close the handle, which can slow down
the operation. Despite the fact that the contents of the two
smaller files may be smaller in total size, the overhead
involved in managing multiple files can offset any potential
advantages in file size. We need to take the time to read in
data for the values and separate information on the sample
locations before we have enough useful information to
analyze the data.

In conclusion, our data sampling method is capable of
meeting a user-specified target reduction ratio and effec-
tively speeds up data movement on HPC systems from 2.8×
to 37.25×. In comparison to a leading lossy compressor,
data sampling has the advantage of meeting the user’s
storage constraint requirements. However, the need to store
both sample values and locations yields less improvement in
data movement speed than achieved by a GPU-optimized
lossy compressor.

Conclusion

The I/O bottleneck found on HPC systems has made in-
telligent data reduction schemes necessary. These methods
need to achieve high post-reconstruction quality while also
being as fast as possible to meet HPC workflow demands.

In this article, we enhance our existing sampling algo-
rithm by introducing multiple ways to improve quality and

18 The International Journal of High Performance Computing Applications 0(0)

throughput. By assisting users in setting the sampling
constraints, they have more flexibility while still being
confident that they will achieve an optimal sample set that
has been shown to improve quality and/or throughput. By
using CUDA, we achieve average throughput improve-
ments between 9.8× to 31.5× while maintaining the same
level of post-reconstruction data quality as the sequential
counterparts. Last, we show that the core sampling algo-
rithm can be interchanged, allowing the user to achieve a
higher quality or higher throughput, depending on their
dataset and situation. Overall, we have introduced and
analyzed several ways to improve the overall performance
of our spatio-temporal hybrid sampling algorithm.

In the future, we aim further to improve the post-
reconstruction quality that our sampling method can achieve.
Specifically, we will evaluate how the information between
multiple variables of the same data series can be leveraged to
yield a more cohesive group of samples. As our methods’
output is a highly compressible list of floats, instead of com-
peting with compression methods, we propose that our sam-
pling method be used as a pre-processing step for compression.
This combination will enable us to achieve even higher ac-
curacy while still maintaining high compression ratios.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. SHF-1910197 and SHF-
1943114. This work was funded by Los Alamos National Labo-
ratory under Information Science and Technology Student Fel-
lowship program. The publication has been assigned the LANL
identifier LA-UR-20-27478. We would like to thank our ECP
collaborators on the ExaAM project. Clemson University is ac-
knowledged for generous allotment of compute time on Palmetto
cluster. The ExaAM research is supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the Los Alamos National Laboratory and
National Science Foundation (SHF-1910197; SHF-1943114).

ORCID iDs

Megan Hickman Fulp https://orcid.org/0000-0001-5630-049X
Cooper Sanders https://orcid.org/0009-0005-4879-3622
Jon C. Calhoun https://orcid.org/0000-0001-7191-4422

Notes

1. https://www.openmp.org/
2. https://developer.nvidia.com/cuda-toolkit

References

Ahrens J, Jourdain S, OLeary P, et al. (2014) An image-based
approach to extreme scale in situ visualization and analysis.
SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE, pp. 424–434.

Akiba H, Fout N and Ma KL (2006) Simultaneous classification of
time-varying volume data based on the time histogram.
EuroVis 6: 1–8.

Belak J, Turner J and Team ET (2019) Exaam: Additive
manufacturing process modeling at the fidelity of the mi-
crostructure. APS 2019.

Bell N and Hoberock J (2012) Thrust: A productivity-oriented
library for cuda.GPU computing gems Jade edition. Elsevier,
pp. 359–371.

Biswas A, Dutta S, Lawrence E, et al. (2021) Probabilistic data-
driven sampling via multi-criteria importance analysis. IEEE
Transactions on Visualization and Computer Graphics 27:
4439–4454.

Biswas A, Dutta S, Lawrence E, et al. (2021) Probabilistic data-
driven sampling via multi-criteria importance analysis. IEEE
Transactions on Visualization and Computer Graphics 27:
4439–4454. DOI: 10.1109/TVCG.2020.3006426.

Biswas A, Dutta S, Pulido J, et al. (2018) In situ data-driven
adaptive sampling for large-scale simulation data summari-
zation. Proceedings of the Workshop on In Situ Infrastruc-
tures for Enabling Extreme-Scale Analysis and Visualization -
ISAV ’18. ACM Press, pp. 13–18. DOI: 10.1145/3281464.
3281467.

Cappello F, Di S, Li S, et al. (2019) Use cases of lossy compression
for floating-point data in scientific data sets. The International
Journal of High Performance Computing Applications 33(6):
1201–1220. DOI: 10.1177/1094342019853336.

Childs H (2015) Data exploration at the exascale. Supercomputing
Frontiers and Innovations 2(3): 5–13.

Delaunay B, et al. (1934) Sur la sphere vide, Izv. Akad.Nauk SSSR,
Otdelenie Matematicheskikh i Estestven- nykh Nauk, 7:
793–800.

Doane DP (1976) Aesthetic frequency classifications. The
American Statistician 30(4): 181–183.

Dutta S, Chen C, Heinlein G, et al. (2017) In situ distribution
guided analysis and visualization of transonic jet engine
simulations. IEEE Transactions on Visualization and Com-
puter Graphics 23(1): 811–820.

Fogal T, Schiewe A and Krüger J (2013) An analysis of scalable
gpu-based ray-guided volume rendering. In: 2013 IEEE
Symposium on Large-Scale Data Analysis and Visualization
(LDAV). IEEE, pp. 43–51.

Hickman Fulp et al. 19

https://orcid.org/0000-0001-5630-049X
https://orcid.org/0000-0001-5630-049X
https://orcid.org/0009-0005-4879-3622
https://orcid.org/0009-0005-4879-3622
https://orcid.org/0000-0001-7191-4422
https://orcid.org/0000-0001-7191-4422
https://www.openmp.org/
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1109/TVCG.2020.3006426
https://doi.org/10.1145/3281464.3281467
https://doi.org/10.1145/3281464.3281467
https://doi.org/10.1177/1094342019853336

Fulp MH, Biswas A and Calhoun JC (2020) Combining spatial
and temporal properties for improvements in data reduc-
tion. 2020 IEEE International Conference on Big Data
(Big Data), pp. 2654–2663. DOI: 10.1109/BigData50022.
2020.9378457.

Grosset P, Biwer CM, Pulido J, et al. (2020) Foresight: analysis
that matters for data reduction. SC20: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis. IEEE, pp. 1–15.

Gutiérrez PD, Lastra M, Benı́tez JM, et al. (2017) Smote-gpu: Big
data preprocessing on commodity hardware for imbalanced
classification. Progress in Artificial Intelligence 6(4): 347–354.

Habib S, Morozov V, Frontiere N, et al. (2013) Hacc: extreme
scaling and performance across diverse architectures. SC’13:
Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis.
IEEE, pp. 1–10.

Hurricane ISABEL Simulation Data (2019) http://vis.computer.
org/vis2004contest/data.html.

Hyndman RJ (1995) The Problem with Sturges’ Rule for Con-
structing Histograms. Monash University. 1–2.

Jibben Z (2020) truchas-pbf. https://gitlab.com/truchas/truchas-
pbf/

NVIDIA (2020) GPU. https://www.nvidia.com/en-us/data-center/
v100/ (accessed 23 April 2021).

Nouanesengsy B, Woodring J, Patchett J, et al. (2014) Adr vi-
sualization: A generalized framework for ranking large-scale
scientific data using analysis-driven refinement. In:
2014 IEEE 4th Symposium on Large Data Analysis and
Visualization (LDAV). pp. 43–50.

Nvidia CUDA (2010) Curand library.
Palmetto Cluster, Clemson University (2021) Online. http://citi.

clemson.edu/palmetto/ (accessed 24 June 2021).
Patchett J and Ahrens J (2018) Optimizing scientist time through

in situ visualization and analysis. IEEE Computer Graphics
and Applications 38(1): 119–127.

Patchett J and Gisler G (2017) Deep Water Impact Ensemble Data
Set. Los Alamos, NM: Los Alamos National Laboratory.
https://datascience.dsscale.org/wp-content/uploads/2017/03/
DeepWaterImpactEnsembleDataSet.pdf

Patchett J, Samsel F, Tsai KC, et al. (2016) Visualization and
Analysis of Threats from Asteroid Ocean Impacts. Los
Alamos, NM: Los Alamos National Laboratory.

Scott DW (2009) Sturges’ rule. WIREs Computational Statistics
1(3): 303–306.

Scott DW (2010) Scott’s rule. Wiley Interdisciplinary Reviews:
Computational Statistics 2(4): 497–502.

Strand G (2015) The cesm workflow re-engineering project.
AGUFM 2015.

Tian J, Di S, Zhao K, et al. (2020) Cusz: An efficient gpu-based
error-bounded lossy compression framework for scientific
data. Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques,
pp. 3–15.

Tian J, Rivera C, Di S, et al. (2021) Revisiting huffman coding:
Toward extreme performance on modern gpu architectures.
2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, pp. 881–891.

Tikhonova A, Correa CD and Ma KL (2010) Explorable images
for visualizing volume data. PacificVis 10: 177–184.

Underwood R, Di S, Calhoun JC, et al. (2020) Fraz: A Generic
High-Fidelity Fixed-Ratio Lossy Compression Framework
for Scientific Floating-point Data.

Wang R, Wang R, Zhou K, et al. (2009) An efficient gpu-based
approach for interactive global illumination. ACM SIG-
GRAPH 2009 papers, pp. 1–8.

Wei TH, Dutta S and Shen HW (2018) Information guided data
sampling and recovery using bitmap indexing. In: 2018 IEEE
Pacific Visualization Symposium (PacificVis). IEEE,
pp. 56–65.

Woodring J, Ahrens J, Figg J, et al. (2011) In-situ sampling of a
large-scale particle simulation for interactive visualization
and analysis. Computer Graphics Forum 30(3): 1151–1160.
DOI: 10.1111/j.1467-8659.2011.01964.x.

Author biographies

Megan Hickman Fulp is a Lecturer of Computer Science at
Coastal Carolina University, holding a Bachelor of Science
degree in Computer Science from the same institution
(2019). She obtained a Master of Science degree in
Computer Engineering from Clemson University (2021),
where her research focused on big data reduction for High-
Performance Computing systems. Her current research
interests lie in effectively teaching computer programming
and algorithmic thinking.

Dakota Fulp is an associate professor in the Computer
Technology department at Horry-Georgetown Technical
College. He received a B.S. degree in Computer Science
and Applied Physics from Coastal Carolina University in
2015 and 2017, respectively. Upon graduating, he re-
searched HPC resiliency with Los Alamos National Lab-
oratory from 2017 to 2020. Following this, he received an
M.S. degree in Computer Engineering from Clemson
University, during which his research focused on data re-
siliency and lossy data compression for HPC systems. His
research interests lie in fault tolerance and resilience for
HPC systems, data compression, and effective teaching
methodologies.

Changfeng Zou is an undergraduate student studying
Computer Engineering at Clemson University. He is driven
by a passion for creating lasting solutions and maximizing
efficiency in computing. He holds the position of president
at IEEE-HKN Zeta Iota Chapter.

Cooper Sanders is an undergraduate computer engineering
student at Clemson University with interests in parallel
computing and numerical algorithms, and a talented young

20 The International Journal of High Performance Computing Applications 0(0)

https://doi.org/10.1109/BigData50022.2020.9378457
https://doi.org/10.1109/BigData50022.2020.9378457
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://gitlab.com/truchas/truchas-pbf/
https://gitlab.com/truchas/truchas-pbf/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
http://citi.clemson.edu/palmetto/
http://citi.clemson.edu/palmetto/
https://datascience.dsscale.org/wp-content/uploads/2017/03/DeepWaterImpactEnsembleDataSet.pdf
https://datascience.dsscale.org/wp-content/uploads/2017/03/DeepWaterImpactEnsembleDataSet.pdf
https://doi.org/10.1111/j.1467-8659.2011.01964.x

software engineer. He has worked for several years as an
undergraduate researcher at Clemson University, as well as
interning with Los Alamos National Lab for a summer. On top
of engineering, he is also an accomplished jazz trombonist.

Ayan Biswas is a scientist at Los Alamos National Labo-
ratory. He is currently leading LANL’s sampling-based data
reduction efforts under the Exascale Computing Project
(ECP) for ALPINE. He was also the co-PI for a recently
concluded LANL funded LDRD-DR project (total funding
$5M over 3 years) that focused on in situ data modeling and
statistical inference. He is an expert of visualization and big
data analysis with also considerable experience in infor-
mation theoretic approaches, vector field exploration, un-
certainty visualization, and machine learning for large-scale
scientific data sets.

Melissa C. Smith is a professor in the Holcombe Department
of Electrical and Computer Engineering at Clemson Uni-
versity. She received her B.S. (1993) and M.S. (1994)
degrees in Electrical Engineering from Florida State
University and a Ph.D. (2003) in Electrical Engineering
from the University of Tennessee. She has over 25 years
of experience developing and implementing scientific

workloads and machine-learning applications across mul-
tiple domains, including 12 years as a research associate at
Oak Ridge National Laboratory. Her current research fo-
cuses on the performance analysis and optimization of
emerging heterogeneous computing architectures (GPGPU-
and FPGA-based systems) for various application domains,
including machine learning, high-performance or real-time
embedded applications, and image processing. She is a
Senior Member of the IEEE.

Jon C. Calhoun is an associate professor in the Holcombe
Department of Electrical and Computer Engineering at
Clemson University. He received a B.S. in Computer
Science from Arkansas State University in 2012, a B.S. in
Mathematics from Arkansas State University in 2012, and a
Ph.D. in Computer Science from the University of Illinois at
Urbana-Champaign in 2017. He was awarded a prestigious
NSF CAREER award in 2020. His research interests lie in
fault tolerance and resilience for high-performance com-
puting (HPC) systems and applications, lossy and lossless
data compression, scalable numerical algorithms, power-
aware computing, and approximate computing. He is a
Senior Member of the IEEE.

Hickman Fulp et al. 21

http://www.fsu.edu/
http://www.fsu.edu/
http://www.utk.edu/

	Accelerated dynamic data reduction using spatial and temporal properties
	Introduction
	Related works
	Spatial and temporal data reduction methods
	Accelerated data reduction methods

	Background
	Importance-based sampling
	Reconstruction
	Optimization strategies
	Data sets
	ExaAM
	Hurricane Isabel
	Asteroid Impact

	Determining input configurations
	Number of bins
	Determining an optimal configuration

	Histogram intersection threshold
	Error threshold
	Number of regions
	Determining an optimal configuration

	Throughput improvements
	Design methodology
	Parallelization analysis
	Datasets and system

	Optimization effects on process throughput
	Parallel performance observations

	Changing the core sampling algorithm
	Comparison to lossy compression
	Quality
	Data movement

	Conclusion
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Author biographies

